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SPECIFICATION AND VERIFICATION OF SLIDING WINDOW
PROTOCOL USING PREDICATE LOGIC

Sachin Kumar1, Veena Bharti2 & Shikha Pandey3

A number of protocol verification reduction techniques were proposed in the past. Most of these techniques are suitable for
verifying communicating protocols specified in the Communicating Finite State Machine (CFSM) model. However, it is
impossible to formally specify communicating protocols with variables using the CFSM model. Also these methods suffered
from the problem of state exploration. In this paper we have proposed a technique that used the predicate logic for specification
and verification of sliding window protocol. This method is based on the technique that between sender and receiver an
action is defined for any transition rule also guards and post-conditions respectively corresponding to that transition rule.
On that basis safety property, deadlock freedom, Liveness property, Livelock freedom is verified.
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1. INTRODUCTION

The design of communication protocols for computer
networks [5] remains an arcane art with occasional
unexpected results even in the hands of the most respected
practitioners. While analysis of protocol efficiency has met
with some success, verification of protocol reliability is still
in its intancy. Protocol verification presupposes a clear
definition of protocol performance goals or the capabilities
to be provided by the protocol to its users. For data transfer,
performance goals include avoiding loss, duplication or
damage of messages transmitted, and delivering them in the
proper sequence. For control functions, reliability goals
involve the proper initialization and synchronization of
control information on both sides of connection. The
possibility of deadlock and the consequences of protocol
failures must also be considered in assessing protocol
reliability.

1.1. About Protocol

Communication protocols are rules whereby meaningful
communication can be exchanged between different
communicating entities. In general, they are complex and
difficult to design and implement. Specifications of
communication protocols written [6] in a natural language
may be unclear or unambiguous and may be subject to
different interpretations. As a result independent
implementation of the same protocol may be incompatible.
In addition, the complexity of the protocols make them very
hard to analyze in an informal way. There is therefore a
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need for precise practice and unambiguous specifications
using some formal languages. Many protocol implemen-
tations used in the field have almost suffered from failures,
such as deadlocks when the conditions in which the protocol
work correctly have been changed, there has been no general
method available for determining how they will work under
the new conditions, It is necessary for protocol designers to
have techniques and tools to detect errors in the early phase
of the design, because the later in the process that a fault is
discovered, the greater the cost of rectifying it.

1.2. Protocol Verification

Protocols can be verified against their design and
implementation. In other words, protocol can be verified
either during the design phase[3] before the system is
implemented, or during the testing and simulation phase
after the system has been implemented. Since design
verification can detect design errors at the early stage,
unnecessary or incorrect implementation can be avoided.
Therefore, design verification has the potential to
significantly reduce the cost of protocol development and
testing.

With respect to design verification, the work can be
divided into two tasks: service-specification verification, and
protocol specification verification. Since service
specifications vary from system to system, different
procedures are required for different protocols. Therefore,
the protocol-specification verification has been the focus
of most of researchers[3].

In summary, protocol verification is a task which
attempts to detect the existence of logic errors in the protocol
design specification at the early development stage.
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1.3. Predicate Logic

The predicate calculus is fundamental in mathematical logic;
important restrictions: the only allowed symbols are →, ⊥,
∀ respectively read as “implies”, “false”, “for all”. In fact,
every other logical symbols can be defined with them. This
restriction is therefore only syntactic, but not semantic.

We suppose given an infinite set of variables:{x,y,….},
an infinite set of constants: c = {a,b,….}and some predicate
symbols P, Q, R,….; each of them has an arity which is an
integer ≥ 0.

 Atomic formulas are of the form  (read false) or
Pt1….Ptk (denoted as p(t1,…,tk)) where P is a predicate
symbol of arity k and t1,….,tk are variables or constants.

Formulas of the predicate calculus are built with the
following rules:

• An atomic formula is a formula.

• If F and G are formulas, then F → G is a
formula(read “F implies G”).

• If F is a formula and x is a variable, then ∀x F is
formula(read “ for all x, F”).

2. FORMAL SPECIFICATION OF SLIDING

WINDOW PROTOCOL

In sliding window protocol [15], each outbound frame
contains a sequence number, ranging from 0 up to some
maximum. At any instant of time, the sender maintains a
fixed size buffer corresponding to set of frames, sent but
yet not acknowledged, with their sequence numbers. This
buffer is termed sender’s window. This storage is done for
possible retransmission; since sent frames may ultimately
be lost or damaged in transit. Since it has multiple
outstanding frames, it maintains multiple logical timers, one
per outstanding frame. Each frame times out independently
of all the other once. Similarly the receiver also maintains a
receiver’s window corresponding to the set of frames it is
permitted to accept. The receiver has a buffer reserved for
each sequence number within its window. Associated with
each buffer is a bit telling whether the buffer is full or empty?
Whenever a frame arrives, its sequence number is checked
to see if it falls within the window. If so, and if it has not
already been received, it is accepted and stored. An
acknowledgement is sent also, if its predecessor frame has
been acknowledged. Whenever the receiver has reason to
suspect that an error has occurred, it sends a negative
acknowledgement (NAK) frame back to the sender. Such a
frame is a request for retransmission of the frame specified
in the NAK. The Sender retransmits a frame, either on
receiving NAK or on being timed out, whichever is earlier.
Any frame falling outside the window is discarded without
comment. The sender’s window and receiver’s window need
not have the same lower and upper limits, or even have the

same size. A frame buffer is released if buffer for its
predecessor frame has already been released. Sender releases
buffer after receiving acknowledgement while receiver does
the same after sending acknowledgement. We define the
states for different processes of the system as follows.

2.1. Sender and Receiver

In a SW protocol, there are two main components: the sender
and the receiver. The sender obtains an infinite sequence of
data from the sending host. We call indivisible blocks of
data in this sequence “frames”, and the sequence itself the
“input sequence”. The input sequence must be transmitted
to the receiver via an unreliable network. After receiving
the frames, the receiver eventually delivers them to the
receiving host. The correctness condition for a SW protocol
says that the receiver should deliver the frames to the
receiving host in the same order in which they appear in the
input sequence.

2.2. Messages and Channels

In order to transmit a frame, the sender puts it into a frame
message together with some additional information, and
sends it to the frame channel. After the receiver eventually
receives the frame message from this channel, it sends an
acknowledgment message for the corresponding frame back
to the sender. This acknowledgment message is transmitted
via the acknowledgment channel. After receiving an
acknowledgment message, the sender knows that the
corresponding frame has been received by the receiver. Thus
the communication between the sender and the receiver is
bi-directional; the sender transmits frames to the receiver
via the frame channel, and the receiver transmits
acknowledgments for these frames to the sender via the
acknowledgment channel.

2.3. Sequence Numbers

The sender sends the frames in the same order in which
they appear in its input sequence. However, the frame
channel is unreliable, so the receiver may receive these
frames in a very different order (if receive at all). Therefore
it is clear that each frame message must contain some
information about the order of the corresponding frame in
the input sequence. Such additional information is called
“sequence number”. If we include as a sequence number
the exact position of the frame in the input sequence, it would
make sequence numbers used by our protocol unbounded
(because conceptually the input sequence is infinite). Since
unbounded sequence numbers are not practical. This is why
in a SW protocol, instead of the exact position of the frame
in the input sequence, the sender sends the remainder of
this position with respect to some fixed modulus K. The
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value of K varies greatly among protocols: it is only 16 for
the Mascara protocol for wireless ATM networks, but 232
for TCP. To acknowledge a frame, the receiver sends in the
acknowledgment message the sequence number for which
the frame was received. It should be noted that
acknowledgments are “accumulative”; for example, when
the sender acknowledges a frame with sequence number 3,
it means that frames with sequence numbers 0, 1 and 2 have
also been received.

2.4. Sending and Receiving Windows

At any time, the sender maintains a sequence of sequence
numbers corresponding to frames it is permitted to send.
These frames are said to be a part of the sending window.
Similarly, the receiver maintains a receiving window of
sequence numbers it is permitted to receive. In our protocol,
the sizes of sending and receiving windows are equal and
represented by an arbitrary integer N. At some point during
the execution it is possible that some frames in the beginning
of the sending window are already sent, but not yet
acknowledged, and the remaining frames are not sent yet.
When an acknowledgment arrives for a frame in the sending
window that is already sent, this frame and all preceding
frames are removed from the window as acknowledgments
are accumulative. Simultaneously, the window is shifted
forward, such that it again contains N frames. As a result,
more frames can be sent either immediately or later.
Acknowledgments that fall outside the window are
discarded. If a sent frame is not acknowledged for a long
time, it usually means that either this frame or an
acknowledgment for it has been lost. To ensure the progress
of the protocol, such frame is eventually resent. Many
different policies for sending and resending of frames exist
[22], which take into account, e.g., the efficient allocation
of resources and the need to avoid network congestion. Here
we are only concerned with the correctness of the protocol,
so we abstract from the details of the transmission policy
and specify only those restrictions on protocol’s behavior
that are needed to ensure safety. During the execution, the
receiving window is usually a mix of sequence numbers
corresponding to frames that have been received out of order
and sequence numbers corresponding to “empty spaces”,
i.e. frames that are still expected. When a frame arrives with
a sequence number corresponding to some empty space, it
is inserted in the window, otherwise it is discarded. At any
time, if the first element of the receiving window is a frame,
it can be delivered to the receiving host, and the window is
shifted by one. The sequence number of the last delivered
frame can be sent back to the sender to acknowledge the
frame (for convenience reasons, we acknowledge delivered
frames instead of received frames). It should be noted that
not every frame must be acknowledged; it is possible to
deliver a few frames in a row and then acknowledge only
the last of them.

3. VERIFICATION OF SLIDING WINDOW PROTOCOL

Each process executes at nonzero speed but we make no
assumption on the relative speed of processes. Several CPUs
may be present but memory hardware prevents simultaneous
access to the same memory location. We also make no
assumption about order of interleaved execution. Almost
every model used for correctness analysis assumes that the
execution of a concurrent system can be viewed in terms of
events that can be considered atomic [16]. Our technique
also views the execution of the system in terms of the atomic
events. These events are communication with the other
process, that is, a message transfer. Due to our assumption
regarding atomicity, we can formalize a data link layer
protocol as a state transition system. We model the system
by considering the presence of a set of processes in the
system, namely

1. SP is a sender process which sends frames in to
the channel.

2. RP is a receiver process which receives frames from
the channel.

3. Fra_OK is a flag, which shows that incoming frame
does not contain any error.

4. Timer process.

5. W_rec is a flag that shows the receiver process has
received all frames of the current window.

6. PP is a producer process which delivers frames to
the sender process.

The predicate expression in(P.x) represents that a
process P is in state P.x A state transition rule represents the
movement of process from one state to other. For firing any
transition rule P.r there exist a corresponding weakest
precondition wp(P.r, R). If the system state satisfies the
condition wp(P.r, R) then execution of the transition rule
P.r will eventually establish the post condition R. We define
an operator “leads to” (symbolized as “→”) in wp
environment with the following semantics. Q → R implies
∃r : wp(r, R) = Q (1)

where Q and R are guards and post-conditions respectively
corresponding to transition rule r.

3.1. Sender Process SP have Following States

State Meaning

1. SP. ready_a SP is ready to send frame_a

2. SP. sent_a SP has sent frame_a

3. SP. recack_a SP has received acknowledgement for
frame_a

4. SP. resend_a SP resends frame_a and restarts its local
Timer

5. SP. nrecak_a SP has received negative
acknowledgement for frame_a
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6. SP. relbuf_a SP has released buffer occupied by
frame_a

3.2. Receiver Process RP have Following States

State Meaning

1. RP. ready_a RP is ready to receive frame_a

2. RP. rec_a RP has received frame_a

3. RP . sentack_a RP has sent acknowledgement for frame_a

4. RP . nsentak_a RP has sent negative acknowledgement for
frame_a

5. RP . inbuf_a RP has put frame_a in buffer

6. RP . relbuf_a RP has released buffer occupied by
frame_a

7. RP. naccept_a RP will not accept frame_a

3.3. Fra_Ok Flag have Following States

State Meaning

1. Fra_Ok=true If the frame arrived at the receiver does
not have any error

2. Fra_Ok=false If the frame arrived at the receiver has
some error

3.4. Timer Process have Following States

State Meaning

1. Tim_idle_a Timer for frame_a is idle

2. Tim_start_a Timer for frame_a starts

3. Tim_end_a Timer for frame_a stops

4. Tim_restart_a Timer for frame_a restarts

3.5. W_rec Flag have Following States

State Meaning

1. W_rec=false All frames related to current window have
not been received, except frame a.

2. W_rec=true All frames related to current window have
been received, except frame a.

3.6. Producer Process PP have Following States

State Meaning

1. PP . idle Producer is idle

2. PP . produced_a Producer has delivered frame a to sender
process

The processes on the basis of above states are as follows:

Process SP: initialized as in(SP. ready_a)

Transition rule

Let,

Ws = size of sender’s window

a = frame in sender’s window where a will assume
values

0, 1, …, (Ws – 1) in sequence

b = next frame in sender’s window such that b = (a + 1)
mod Ws

c = arbitrary frame in sender’s window

a' = first frame in sender’s window after sliding such
that

a' = c + 1

The range of values assumed by a' is same as a.

SP . send_frame

def R1= in(SP . ready _b) ∧ in(SP . sent_a) ∧
in(Tim_start_a)

∧ in(Channel_launched)

R2 = in(SP . relbuf _a) ∧ in(Tim_end_a)

∧ in(SP . ready _b) ∧ in(SP . recack _a)

R3=in(SP . resend _a) ∧ in(Tim_restart_a) ∧ in(SP .
ready_c)

∧ in(SP . nsentak _a)

R4=in(SP . resend _a) ∧ in(Timer_restart_a) ∧ in(SP .
ready_c)

R5=in(SP . relbuf _a-to-c) ∧ in(SP . ready _ a')

R = R1 ∨ R2 ∨ R3 ∨ R4 ∨ R5

Q1=in(SP . ready _a) ∧ in(PP . produced_a)

Q2=in(SP . sent_a) ∧ in(Tim_start_a)

∧ in(Channel_produce_ack_i)

Q3=in(SP . ready _c) ∧ in(Channel_produce_nak_a)

Q4=in(SP . ready _c) ∧ in(Tim_end_a)

Q5=in(SP . resend _a) ∧ in(Channel_produce_ack_c)

wp(SP . send_frame, R) =(Q1 ∨ Q2 ∨ Q3 ∨ Q4 ∨ Q5)

∧ (Q1 ⇒ wr(select, in(SP . send_frame . s1)))

∧ (Q2 ⇒ wr(select, in(SP . send_frame . s2)))

∧ (Q3 ⇒ wr(select, in(SP . send_frame . s3)))

∧ (Q4 ⇒ wr(select, in(SP . send_frame . s4)))

∧ (Q5 ⇒ wr(select, in(SP . send_frame . s5)))

∧ (in(SP . send_frame . s1) ⇒ wp(SP . send_frame1, R1))

∧ (in(SP . send_frame . s2) ⇒ wp(SP . send_frame2, R2))

∧ (in(SP . send_frame . s3) ⇒ wp(SP . send_frame3, R3))

∧ (in(SP . send_frame . s4) ⇒ wp(SP . send_frame4, R4))

∧ (in(SP . send_frame . s5) ⇒ wp(SP . send_frame5, R5))
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End of the transition rule SP . send_frame;

End of the process SP;

Process RP; initialized as in(RP . ready _a)

Transition rule

Let,

RW = size of receiver’s window

a = frame in receiver’s window where a will assume
values

0, 1, …, (RW – 1) in sequence

b = next frame in receiver’s window such that

b = (a + 1) mod RW

c = arbitrary frame in receiver’s window

a' = first frame in receiver’s window after sliding such
that a' = c + 1

The range of values assumed by a2 is same as a.

RP . receive_frame

def R
1
= in(RP. rec_a) ∧ in(RP . ready _a) ∧ in(RP .

sentack_i)

∧ in(RP. relbuf _a) ∧ in(W_rec=false)

R2=in(RP . ready _a) ∧ in(RP . inbuf_c)

R3= in(RP . rec_a) ∧ in(RP . ready _ a') ∧ in(RP .
sentack_c)

∧ in(RP . relbuf _a-to-c) ∧ in(Win_rec=true)

R4=in(RP . ready _a) ∧ in(RP . nsentak_a)

R5=in(RP . no_accept_c)

R=R1 ∨ R2 ∨ R3 ∨ R4 ∨ R5

Q1=in(RP . ready _a) ∧ in(Channel_produce_i)

∧ in(Frame_a_Ok=true)

Q2=in(RP . ready _a) ∧ in(Channel_produce_c)

∧ in(Frame_c_Ok=true) ∧ ¬ in(RP . inbuf_c)

Q3=in(RP . ready _a) ∧ in(Channel_produce_a)

∧ in(RP . inbuf_b-to-c) ∧ in(Frame_a_Ok=true)

Q4=in(RP . ready _a) ∧ in(Channel_produce_a)

∧ in(Frame_a_Ok=false)

Q5=in(RP . inbuf_c) ∧ in(Channel_produce_c)

wp(RP . receive_frame, R) = (Q1 ∨ Q2 ∨ Q3 ∨ Q4 ∨ Q5)

∧ (Q1 ⇒  wr(select, in(RP . receive_frame . s1)))

∧ (Q2 ⇒ wr(select, in(RP . receive_frame . s2)))

∧ (Q3 ⇒ wr(select, in(RP . receive_frame . s3)))

∧ (Q4 ⇒ wr(select, in(RP . receive_frame . s4)))

∧ (Q5 ⇒ wr(select, in(RP . receive_frame . s5)))

∧ {(in(RP . receive_frame . s1) ⇒ wp(RP .
receive_frame1, R1))}

∧ {(in(RP . receive_frame . s2) ⇒ wp(RP .
receive_frame2, R2))}

∧ {(in(RP . receive_frame . s3) ⇒ wp(RP .
receive_frame3, R3))}

∧ {(in(RP . receive_frame . s4) ⇒ wp(RP .
receive_frame4, R4))}

∧ {(in(RP . receive_frame . s5) ⇒ wp(RP .
receive_frame5, R5))}

End of the transition rule RP . receive_frame;

End of the process RP;

4. PROOF OF CORRECTNESS

Correctness of any protocol can be established by showing
that the protocol satisfies the logical properties: safety,
deadlock, and progress properties.

4.1. Safety Property

All frames must be received without repetition. It will be
proved in two parts:

(a) Transition rule Q5 → R5 of receiver process reveals
that weakest precondition for not accepted frame
c is “frame c is already in buffer of receiver”. Thus
any frame once received will never be received
again.

(b) ‘All’ frames must be received. We interpret, “if all
frames of current window are received, only then
receiver should become ready to receive first frame
of next window”. This condition can be represented
in predicate form as follows.

in(RP . rec_a) ∧ in(W_rec=true) → in(RP . ready_m) (2)

As defined previously m = a', where a' is sequence
number of first frame in next window.

Transition rule Q3 → R3 exhibits that

Q3 → {in(RP . rec_a) ∧ in(W_rec=true) ∧ in(RP.
ready_m) ∧ I} (3)

Where I = in(RP . sentack_c) ∧ � in(RP . relbuf _a-to-c)

Also the predicate shown in Eq. (2) is weaker than that
of in Eq. (3). Thus correctness of the predicate shown in
Eq. (2) is ensured.
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4.2. Deadlock Freedom

A state deadlock occurs when each and every processes can
only remain indefinitely in the same state. Sender and
receiver are two non-competing processes, represented
through guarded commands. In guarded commands, though
more than one guards can be true at a time, only one true
guard will be selected and corresponding statement will be
executed. Thus deadlock freedom is ensured.

4.3. Progress Property

We need to prove that each of the frames is incremented by
one infinitely with finite delay. Transition rule Q1 →R1 of
the sender process reveals that transition from ready to send
frame a to ready to send frame b (where b = a + 1) needs no
co-operation from any other process except it’s producer
process. Producer process supplies frames from upper layer
to sender process. Thus, every frame supplied by producer
process will eventually be transmitted.

5. CONCLUSION

In this paper, I have argued that predicate logic can be used
to specify protocols in a simple and elegant manner. In
particular, we have seen how to use propositional linear
predicate logic to specify the protocols. Of course, using
this logic to express the verification is not new, but the
application of this technique to specification of protocol is
both novel and we believe, very promising .In future, this
method can be applied for the verification of other protocol
and also new method can be deduced to verify the protocol.
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